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This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the
BOUTþþ code, which contributes to increasing the physics understanding of edge-localized-modes
(ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly
suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I
ELMs, it is found from linear simulations that retaining complete first order FLR corrections as
resulting from the incomplete “gyroviscous cancellation” in Braginskii’s two-fluid model is
necessary to obtain good agreement with gyro-fluid results for high ion temperature cases
(Ti ! 3 keV) when the ion density has a strong radial variation, which goes beyond the simple local
model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is
inversely proportional to Ti because the FLR effect is proportional to Ti. The FLR effect is also
proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR
effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid
model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the
pedestal pressure. Due to the additional FLR-corrected nonlinear E " B convection of the ion gyro-
center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial
spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to
prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode
profiles. The simulation results show that most energy is lost via ion channel during an ELM event,
followed by particle loss and electron energy loss. Because edge plasmas have significant spatial
inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier
method for the computation of Landau-fluid closure terms based on an accurate and tunable
approximation. The accuracy and the fast computational scaling of the method have been
demonstrated.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801746]

I. INTRODUCTION

This paper reports on the theoretical and simulation
results of a Gyro-Landau-fluid (GLF) extension of the
BOUTþþ code1 which contributes to increasing the physics
understanding of edge-localized-modes (ELMs). The large
ELMs with low-to-intermediate-n peeling-ballooning (P-B)
modes are significantly suppressed due to finite Larmor ra-
dius (FLR) effects when the ion temperature increases.
Meanwhile, advanced GLF models with closure of high
moments are necessary to simulate small ELMs with high-n
drift/resistive ballooning modes and to obtain self-consistent
turbulence and transport between ELMs for the pedestal
plasma profiles rebuild.

An isothermal truncation of the general electromagnetic
gyro-fluid model of Snyder and Hammett2 is developed for

ELM simulations. The ion gyrocenter density and electron
density are combined to yield a gyro-kinetic vorticity density
equation. The set of nonlinear electromagnetic gyro-fluid
equations consists of gyro-kinetic vorticity density, ion gyro-
center density, the generalized Ohms law, and Ampere’s
law. The simple set of gyro-fluid equations correctly
describes a range of plasma instabilities relevant to edge
plasmas, such as low-to-intermediate-n peeling-ballooning
modes and high-n drift-ballooning modes. The first-order
Pad!e’s approximation to C0ðbÞ ¼ 1=ð1þ bÞ is used to get
the potential by inverting the gyrokinetic vorticity density in
configuration space. In the limit of small ion gyro-radius
length, b ¼ k2?q

2
i & 1 (to first order finite Larmor radius

approximation in b), this set of equations is shown to be the
same as the two-fluid model that includes FLR effects. We
demonstrate that the complicated nonlinear gyro-viscous ten-
sor in the two-fluid model naturally appears in the isothermal
gyro-fluid model as the FLR-corrected E " B convection for
the ion gyro-center density in the gyro-kinetic vorticity
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density equation and the FLR-corrected gyro-kinetic vortic-
ity density. This offers a simple, yet adequate description of
ion dynamics that is relatively easy to implement in nonlin-
ear simulation codes. We also show that the gyro-kinetic
vorticity density is the charge density only in the cold-ion
limit.

Because edge plasmas have significant spatial inhomoge-
neities and complicated boundary conditions, it is desirable to
compute the closure terms in configuration space. The nonlo-
cality of Landau-fluid operators can make the naive direct
computations of the closure terms in configuration space via
convolution or matrix multiplication very expensive. We have
therefore developed a fast non-Fourier method for the compu-
tation of Landau-fluid closure terms based on an accurate and
tunable approximation that can be numerically implemented
through the solution of matrix equations in which the matrices
are tridiagonal or narrowly banded. The accuracy, for the op-
erator itself and for the resulting plasma response function and
the fast computational scaling of the method have been dem-
onstrated. A spectral collocation analysis has been developed
that greatly aids in the optimization of the approximations for
accuracy and computational cost, both for cases that are colli-
sionless and for cases where collisional and collisionless
damping processes compete.

As gyro-fluid code development proceeds, we also build
the multi-field two-fluid codes in parallel to investigate
additional important physics missing in the basic 3-field iso-
thermal gyro-fluid model and to guide the multi-moment
gyro-fluid extension that increases in accuracy to the kinetic
equation. As it is well known that parallel Landau damping
is important to microturbulence, we find that the parallel
thermal diffusivities are large on the top of pedestal plasmas,
which prevent the further encroachment of ELM perturba-
tion into core plasmas and therefore leads to steady state
L-mode profiles. This motivates us to develop a nonlocal
parallel Gyro-Landau-fluid thermal transport model valid in
all collisionality regimes.

The organization of this paper is as follows. The basic
set of equations and isothermal simulation model are given
in Sec. II. The 3-field and 6-field nonlinear simulations of
peeling-ballooning modes are discussed in Sec. III. A new
non-Fourier Method for applying the Landau-fluid operators
is given in Sec. IV. Summary and discussion are given in
Sec. V.

II. AN ISOTHERMAL ELECTROMAGNETIC 3-FIELD
GYRO-FLUID MODEL

To begin, we are interested in a simple 3-field gyro-fluid
model that describes the finite Larmor radius (FLR) effects
on early phase of ELM dynamics. In order to avoid compli-
cations associated with the sound wave, ion parallel motion,
ion and electron Landau damping, and the interaction of
kinetic Alfv!en waves with drift waves, we assume that
kjjvti & x'i and be & 1, where vti is the ion thermal velocity,
x'i is the ion drift frequency, and be is the ratio of the elec-
tron kinetic pressure to the magnetic pressures. The validity
of the reduced model will be discussed in Sec. III B. The iso-
thermal 3-field gyro-fluid model can be obtained from

Snyder-Hammett model2 by (1) assuming constant tempera-
tures for both the ions and electrons; (2) discarding all but
the lowest-order moment for the ions and the lowest two par-
allel moments for the electrons; (3) ignoring compressibility
of E " B drift flow; (4) adding the cross term r?ln ni
(r½ðC0 * C1Þ e/T0 + in the gyro-kinetic Poisson equation which
is important for pedestal plasmas with large density gradi-
ent;3 and (5) adding the current diffusion term with hyper-
resistivity gH in the generalized Ohm’s law for magnetic
reconnection in high-Lundquist number pedestal plasmas4
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where "ni is the gyro-phase independent part of the real space
ion density. The notation niG is the ion gyro-center density
and ni is the particle density (equal to ne in the limit of small
Debye length, kkD & 1). For the various definitions of den-
sity, the relation between the particle and gyro-center repre-
sentations is given by the gyro-kinetic Poisson equation,
Eq. (5). Definitions of various quantities associated with
plasma physics are as follows:

vEG ¼ b0 "r?UG=B; vE ¼ b0 "r?/=B;
~B ¼ rAjj " b0: (7)

The notation UG ¼ "U ¼ C1=2ðbÞ/ has been introduced for
gyro-averaged electric potential. Here, rjjF ¼ B@jjðF=BÞ for
any F, @jj ¼ @0

jj þ ~b (r; ~b ¼ ~B=B; @0
jj ¼ b0 (r;j¼ b0 (rb0,

g is resistivity and gH hyper-resistivity, which is equivalent
to the electron viscosity le? ¼ ðnee2=meÞgH .5 The symbol
tilde represents the fluctuation quantities.

Since in the long wavelength regime of a quasi-neutral
plasma "ni and ne are two large numbers and are almost equal
"ni , ne and Eq. (5) can be rewritten as 1* "ni=ne ’ ðk?qiÞ

2

e/=Te, where ðk?qiÞ
2 & 1 and e/=Te , 1, the desired solu-

tion of Poisson equation as written depends on the difference of
two large and almost equal numbers. Therefore, it is difficult to
accurately obtain numerical solutions when niG and ne evolve
separately because the numerical errors in ð"niðx; tÞ * neðx; tÞÞ
may be on the same order as the ion polarization density.

Here, we propose an alternative formulation. We define two
new variables: gyrokinetic vorticity density -G ¼ eBðne * niGÞ
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and gyrokinetic total pressure pG ¼ piG þ pe ¼ niGTiG
þ neTe ¼ ðniG þ neÞT0, assuming electron temperature Te
being equal to ion temperature TiG, Te ¼ TiG ¼ T0. For the
isothermal model, which neglects all considerations of tem-
perature dynamics, we can rewrite the gyrokinetic vorticity
density as

@-G
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@pG
@t

þ vE (rpG þ T0ðvEG * vEÞ (rniG ¼ 0; (9)

-G ¼ eB C1=2
0 ðbÞniG * niG * ni½1* C0ðbÞ+

Zie/
T0

! "% &

þ nieBq2ir?lnni (r? ðC0 * C1Þ
Zie/
T0

! "# $
; (10)

ne ¼
1

2

pG
T0

þ -G

eB

! "
; niG ¼ 1

2

pG
T0

* -G

eB

! "
; pe ¼ neT0:

(11)

Here, the parallel current term and the diamagnetic flow
when Ti 6¼ Te have been neglected in pressure equation. The
collisional stress tensors and other higher order off-diagonal
terms of the viscosity tensor can easily be included in con-
nection to fluid descriptions. The equations for Ajj and Jjj are
the same as in Eqs. (3) and (4). This formulation naturally
couples different parallel/poloidal domains (core, the scrape-
off-layer and the private flux region) together in the edge
region through radial advection and gyroaverage. In princi-
ple, the vorticity formulation contains the same information
as gyro-fluid Eqs. (1) and (2) because it is derived from
them. Besides the numerical reason as discussed above, the
vorticity Eq. (8) has the advantage of relative easily being
generalized to a general vorticity equation with accurate
physics for long wavelength and transport time scale phe-
nomena like the self-consistent calculation of the radial elec-
tric field,6 but this will be the subject of a future publication.
Instead, in this study, we employ ion equilibrium with sub-
sonic flow velocity vi, which will be characterized by the
force balance relation as discussed in Sec. II B.

A. Gyro-fluid vorticity density equation in the limit of
small ion gyro-radius length

In the long-wavelength limit, where ðk?qiÞ
2 & 1, C0ðbÞ

¼ 1=ð1þ bÞ ’ 1* b;C1=2
0 ðbÞ ¼ 1=ð1þ b=2Þ ’ 1* b=2; C0

*C1’ ð1*b=2Þ=ð1þbÞ’1*3b=2;UG*/¼ð1=2Þq2ir2
?/.

The 3-field gyro-fluid model in the limit of small ion gyro-
radius length becomes
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The equations for Ajj, Jjj, ne, niG, and pe are the same as Eqs.
(3), (4), and (11), respectively. By defining the two-fluid vor-
ticity density - ¼ xci½-G þ ðeB=2T0Þq2ir2

?piG+, this equa-
tion can be rewritten into the form which is the same as two-
fluid version of vorticity equation (2) given by Xu et al.,7

excluding external momentum sources and collisional ion
viscosity, which is given here again for comparison and will
be later referred as two-fluid model in simulation sections
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It should be noted, however, that Eq. (15) is written in
CGS units as the original paper,7 while SI units are used in
this paper. This resolves the long-standing issue regarding
the difference in vorticity equation derived from two-fluid
and gyrokinetic framework. The gyro-viscous terms emerge
naturally from the FLR nonlinearities in the ion gyrocenter
density in the limit of small ion gyro-radius length.
Furthermore, the gyro-fluid equations show a simple physics
picture and can be easily implemented in simulation codes.
The one-half of ion diamagnetic drift vorticity in -G [the
last term on the right-hand-side of Eq. (14)] indicates that
the gyro-kinetic vorticity density -G is the charge density
only in the cold-ion limit.

B. Gyro-fluid equilibrium and axisymmetric
component of fluctuations

Ion equilibrium with subsonic flow velocity, vi, can be
characterized by the force balance relation niZierUþrPi

¼ Zienivi " B. The parallel two-fluid vorticity (or simply
two-fluid vorticity) - ¼ xcib (r" ðnimiviÞ therefore can be
written as - ¼ niZier2

?Uþ niZier?lnni (r?Uþr2
?Pi.

For a typical ion equilibrium with subsonic ion flow velocity
and with weak ion temperature gradient in H-mode pedestal
plasmas, the E " B drift is balanced with ion diamagnetic
drift, the equilibrium vorticity is almost zero, -0 ’ 0, which
yields the isothermal relation ZieU0 ’ T0lnPi0.

Therefore, to lowest order of the poloidal ion gyroradius to
the ion temperature scale (qpi=LTi & 1), subsonic ion flow
implies that the pedestal is maintained by a large electron cur-
rent with the ions electrostatically confined. Since the two-fluid
vorticity is different from gyro-fluid vorticity by one-half of ion
diamagnetic drift vorticity, typical subsonic ion flow force bal-
ance means a non-zero gyro-fluid equilibrium vorticity

-G0 ¼ * eB

2T0

! "
q2ir

2
?Pi0: (16)

Similarly for the isothermal model, if we assume that the
turbulence-generated steady-state axisymmetric component
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of ion flow is subsonic (hvi?if & vTi), the same isothermal
relation holds for gyro-fluid model as well ZieU ’ T0 ln
ðPi0 þ hpiifÞ. Here, hpiif means the axisymmetric component
of ion pressure fluctuations, i.e., n¼ 0 component. The same
is true for the turbulence-generated axisymmetric component
of gyro-fluid vorticity

h-if ¼ 0 ) h-Gif ¼ * eB

2T0

! "
q2ir

2
?hpiGif: (17)

In other words, we assume that the ion response is adiabatic
for both equilibrium and steady-state axisymmetric compo-
nent of fluctuations.

III. SIMULATIONS OF EDGE-LOCALIZED-MODES

To study the physics of nonlinear P-B mode dynamics,
we choose circular cross-section toroidal equilibria with an as-
pect ratio of 2.9 generated by the TOQ equilibrium code. The
plasma equilibrium is far above the marginal P-B instability
threshold with a pedestal toroidal pressure bt0 ¼ 1:941
"10*2 and a normalized pedestal width Lped=a ¼ 0:0486.8

This is a simple circular equilibrium which has been designed
for use in code verification and physics exploration. It is not
meant to represent a particular experimental case, but rather is
an example case with a strongly unstable pedestal in simple
geometry. This equilibrium has been used in previous code
verification exercises, and it is described in detail in Ref. 8. It
is worth noting that in experimental reconstructions, both the
bootstrap current as well as the Ohmic (and usually insignifi-
cant driven) current are included. The bootstrap current is gen-
erally the largest component, and so for simple test equilibria
such as this one, one can use a bootstrap current profile to get
a typically shaped current profile across the edge region.

In this section, a series of gyro-fluid and two-fluid simula-
tions are conducted to investigate the scaling characteristics of
the ELMs as a function of ion temperature and density.
During the scan the pressure profile and the magnetic equilib-
rium are kept the same. Therefore the bootstrap current is kept
the same as the base case (Tbase ¼ 3 keV). Because BOUTþþ
code reads the bootstrap current from the equilibrium file,
which is generated by the TOQ equilibrium code, other equi-
librium files are not currently available. Nevertheless, since
the bootstrap current drive is small for the base case, we label
it as a ballooning-dominated equilibrium. It is anticipated that
the impact of the bootstrap current on the scan is small as
well, or at least for cases T0 ¼ Ti0 ¼ Te0 < Tbase ¼ 3 keV
where bootstrap current becomes even smaller.

In this study, both equilibrium flow and turbulent zonal
flow have been set to be zero for both two-fluid and gyro-
fluid models in BOUTþþ code: V0 ¼ VE0 þ VrPi ¼ 0 and
hdvif ¼ hvEif þ hvrPiif ¼ 0. Therefore, the equilibrium
electric field is Er0 ¼ ð1=n0ZieÞrrPi0 with ion pressure
Pi0 ¼ P0=2, and the perturbed electric field is hErif
¼ ð1=n0ZieÞrrhPiif. The zonal magnetic field is also set to
be zero as it is negligibly small compared to the equilibrium
magnetic field B0. The influence of equilibrium shear flow
on peeling-ballooning instabilities and edge localized mode
crashes can be found in a previous publication.10

Radial boundary conditions used are -G ¼ 0; @pG=
@w ¼ 0 for gyro-fluid and - ¼ 0; @p=@w ¼ 0 for two-fluid,
r2

?Ajj¼0, and @/=@w¼0 on inner radial boundary; -G¼0;
pG¼0 for gyro-fluid and -¼0; p¼0 for two-fluid,
r2

?Ajj¼0, and /¼0 on outer radial boundary. The domain
is periodic in parallel coordinate y (with a twist-shift condi-
tion) and periodic in binormal coordinate z. For efficiency,
when performing nonlinear simulations, only 1/5th of the
torus is simulated. The number of grid cells in each coordi-
nate are nw¼512;ny¼64, and nz¼32.

From the given magnetic geometry and plasma profiles
with edge pedestal structures, the simulation is initialized
with a small n¼ 15 vorticity perturbation with Gaussian
shape in radial and poloidal direction. The fastest growing
mode dominates the initial phase of the calculation, in which
the perturbation grows at an approximately exponential rate
due to the P-B modes. After this initial linear phase, the per-
turbation evolves to a nonlinear saturated state, a pedestal
collapsing phase, and a new sustained turbulent state without
edge pedestal structures.

A. ELM 3-field gyro-fluid simulations

Utilizing a Pad!e approximation for the modified Bessel
functions, this set of equations (3), and (8) and (9) with the
auxiliary equations (4), (10) and (11), (16) and (17) is imple-
mented in the BOUTþþ framework with full ion FLR effects,
except that C0 * C1 ’ 1 is used in the last term of Eq.(10) for
ELM simulations, where we assume k?Ln - 1. This simple
isothermal 3-field gyro-fluid model does not yet include
Landau damping for peeling-ballooning (P-B) modes with
x , x'i - xti, where x'i is the ion diamagnetic drift fre-
quency and xti ¼ vti=qR is the thermal ion transit frequency.

In this section, the resistivity g, hyper-resistivity, gH,
and edge temperature T0 are treated as constants in space-
time across simulation domain.

1. Linear 3-field gyro-fluid simulations

The initial simulation results are shown to be consistent
with the previous two-fluid model including only the ion dia-
magnetic drift for constant density profile. Retaining the
complete first-order FLR corrections (including all three
terms on the second line of Eq. (15)) is necessary to obtain
good agreement with gyro-fluid results for high ion tempera-
ture cases (Ti ! 3 keV) when the ion density has a strong ra-
dial variation. The influence of gyro-radius effects on the
linear growth rate of P-B modes vs. n (top) and khqi (bottom,
calculated with Ti¼ 1 kev) is summarized in Fig. 1 for type-I
ELMs. Good agreement in the linear growth rate is shown in
long-wavelength limit among the ideal MHD model (black),
two-fluid model (solid), and gyro-fluid model (dash). In both
cases, the maximum growth rate is inversely proportional
to Ti because the FLR effect is proportional to Ti. The
FLR effect plays the role of a threshold in the growth rate.
Only the perturbations with a growth rate higher than the
threshold become unstable. Therefore, as the ion temperature
increases, the FLR and the stabilizing effect increase. The
FLR effect is also proportional to toroidal mode number n,
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so for high n cases, the peeling-ballooning mode is stabilized
by FLR effects.

2. Nonlinear 3-field gyro-fluid simulations

Nonlinear gyro-fluid simulations show results that are
similar to those from the two-fluid model, namely that the
P-B modes trigger magnetic reconnection, which drives the
collapse of the pedestal pressure.4,9 Hyper-resistivity is
found to limit the radial spreading of ELMs by facilitating
magnetic reconnection. However, as shown in Fig. 2, varia-
tion by three orders of magnitude in hyper-resistivity leads
to variation of less than a factor of two in ELM size. The
ELM size is found to be weakly sensitive to the hyper-
resistivity for large ELMs. For a fixed hyper-resistivity
SH ¼ 1012, when S > Sc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHxA=c

p
> 106, which is rele-

vant to today’s modestly sized tokamaks and ITER, our

previous simulations find that the ELM size is insensitive to
the resistivity.9 Due to the additional FLR-corrected nonlinear
E " B convection for the ion gyro-center density, the gyro-
fluid model further limits the radial spreading of ELMs as
shown in Fig. 2, and for a ballooning-dominated equilibrium
the FLR effect can significantly decrease the ELM size when
the pedestal ion temperature increases from 1keV to 4 keV
because high-n modes are stabilized. Here the Lundquist
number S ¼ l0RvA=g ¼ 108, the hyper-Lundquist number
SH ¼ l0R

3vA=gH, vA is the Alfv!en velocity, and R is the major
radius. The ELM size is defined as DELM ¼ DWPED=
WPED ¼

Ð Rout

Rin

Þ
dRdhðP0 * hPifÞ=

Ð Rout

Rin

Þ
dRdhP0, the ratio of

the ELM energy loss (DWPED) to the pedestal stored energy
Wped. Here, P is the pedestal pressure and the symbol hif
means the average over bi-normal periodic coordinate. The
lower integral limit is the pedestal inner radial boundary Rin,
while the upper limit is the radial position of the peak pressure
gradient Rout.

B. Nonlinear 6-field two-fluid simulations

In Sec. III A, we presented 3-field isothermal gyro-fluid
and two-fluid models to simulate ELM dynamics, which
include the fundamental physics: (1) peeling-ballooning
instability; (2) ion diamagnetic stabilization of high-n bal-
looning modes; and (3) resistivity and hyper-resistivity for
magnetic reconnection and ELM crashes. The question natu-
rally arises how the additional physics affects the basic ELM
models. Therefore, we have extended the basic 3-field model
to sophisticated multi-field models: (1) four-field model11

with vorticity -, total pressure P, parallel vector potential
Ajj, and ion parallel velocity Vjj, which include sound waves;
(2) five-field model12,13 with vorticity -, density n, ion and
electron temperature Ti;e, and parallel vector potential Ajj,
which include parallel thermal diffusivities; and (3) six-field
model14 based on Braginskii equations in drift ordering with
vorticity -, density n, ion and electron temperature Ti;e, par-
allel vector potential Ajj, and ion parallel velocity Vjj.

In these five-field and six-field models, nonlinear paral-
lel thermal diffusivities and nonlinear resistivity are used.
Due to the strong spatial variation of the plasma density
and temperature profiles in the edge pedestal across the sepa-
ratrix, we use the following flux-limited expression for paral-

lel thermal diffusivity in a harmonic average form:15 vef fjjj

¼ ð1=vSHjjj þ 1=vFSjjj Þ
*1; j ¼ e; i:, where vSHjje ¼ 3:2v2th;e=!e; v

SH
jji

¼ 3:9v2th;i=!i, and vFSjjj ’ ajvth;jq95R0. Under collisional condi-

tions, the Spitzer-Harm expressions vSHjjj clearly apply. In the

opposite collisionless or long mean free path limit, the heat

flux saturates at the one-way free-streaming value vFSjjj , where
aj is the flux-limiting coefficient, i.e., the ratio between free-
streaming and actual heat fluxes in the collisionless limit. A
number of studies using kinetic simulations have produced
widely disparate values for aj, ranging from 0.03 to 3.16

Here, we assume aj ¼ 1. Clearly the accuracy of such a flux-
limiting coefficient is not high although better nonlocal
Gyro-Landau-fluid models are under development by
extending the Landau-fluid operator to collisional regime

FIG. 1. The influence of the FLR physics on the linear growth rate of P-B
modes versus toroidal mode number n (top) or poloidal wavelength normal-
ized to ion Larmor radius khqi (bottom), calculated with T0 ¼ 1 keV for the
ideal MHD P–B mode (black), with two-fluid retaining the complete first-
order FLR corrections (solid), and with gyro-fluid full FLR effects (dash) for
different plasma temperature Ti. The growth rates are normalized to the
Alfv!en frequency xA, where xA ¼ vA=R0 and vA is the Alfv!en velocity and
R0 is the major radius.

FIG. 2. ELM size vs ion temperature Ti and hyper-resistivity gH for constant
density case. Lundquist number S ¼ l0R0vA=g ¼ 108 and hyper-Lundquist
number SH ¼ l0R

3vA=gH . The plasma current drive and magnetic equilib-
rium are fixed during the scan.
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using the fast non-Fourier approach as discussed in Sec. IV.
From 5-field and 6-field simulations, we typically find that
the parallel thermal diffusivities are large on the top of ped-
estal, as in shown Fig. 3, which prevent the further encroach-
ment of ELM perturbation into core plasmas and, therefore,
leads to steady state L-mode profiles, as indicated by the ra-
dial profiles of parallel thermal diffusivity after an ELM

crashes (solid curve, /
ffiffiffiffiffiffiffiffiffiffi
hTeif

q
).

In 6-field model, the equilibrium pressure profile P0 is
separated into ion density ni0, ion and electron temperature,
Ti0 and Te0. For a given pressure, we partition it between den-
sity and temperature, select representative density profiles ni0
using the following analytical formula, and then back out the
temperature using the relation Ti0 ¼ Te0 ¼ P0=ð2ni0Þ:

ni0ðxÞ ¼
ðnheight " npedÞ

2
1* tanh

x* xped
Dxped

! "# $
þ nave " nped:

(18)

Here, nped is the ion number density on the top of the pedes-
tal region, nave is the ratio to control the bottom amplitude of
ni0 outside the separatrix, and nheight is the coefficient to
specify the gradient of ni0. The variables xped and Dxped rep-
resent the position of peak gradient and the width of pedestal
region of P0, respectively. The location of the separatrix is
the normalized poloidal flux wn ¼ 1:0. The density profile
ni0 is set to be a constant value outside the separatrix. The
simulation results in the Table I are obtained for equilibrium

profiles using the parameters nheight ¼ 0:55 and nave ¼ 0:2,
so Te0 ¼ 1:2 keV at the inner boundary and Te0 ¼ 48 eV in
the scrape-off layer plasmas. For 3-field model, we use
the ideal running option plus diamagnetic drift, normalized
resistivity with Lundquist number S ¼ 108, additional gyro-
viscous terms defined in the second line of Eq. (15), and the
same density profile ni0. For 6-field, the full Braginskii’s
two-fluid model is used as defined in Ref. 14 with Spizer-
Harm resistivity profile.

With all additional physics added, such as ion acoustic
waves, parallel thermal diffusivities, Hall effect, toroidal
compressibility, and electron-ion friction, for the same
plasma equilibrium as described in the beginning of
Sec. III A, we find that the change of the linear growth rate
for most unstable modes is less than 20% in comparison with
the results of the basic 3-field two-fluid model although the
6-field model shifts the instability threshold from n¼ 3 of
3-field model to n¼ 4 of 6-field model for low-n modes and
shifts stable threshold from n¼ 100 of 3-field to n¼ 80 of
6-field model for high-n modes, as shown in Table I. Here,
the differences of linear growth rates for different mode
number n between these two models are listed. The ELM
size at the saturation phase is also listed in this table and the
difference of two models is 1.4%.

Therefore, the 3-field two-fluid model is good enough
to qualitatively understand the ELM thresholds due to P-B
modes and quickly simulate early phase of ELM crashes
with strongly unstable pedestals. However, ELM dynamics
is a multi-scale problem, ranging from meso-scale MHD
events to micro-scale turbulent dissipation due to electron
gyro-radius effects. In order to simulate a ELM cycle and
perform experimental validations, sophisticated multi-field
models are necessary to obtain (1) ELM power loss via sepa-
rate ion and electron channels; (2) ELM power depositions on
plasma facing components (PFCs); and (3) self-consistent tur-
bulence and transport between ELMs for the pedestal profiles
rebuild. From six-field simulations, we find that most energy
is lost via ion channel during an ELM event, followed by
particle loss and electron energy loss, as shown in Fig. 4.
Furthermore, Fig. 4(b) show results of density scan for a fixed
pressure profile with a ballooning-dominated equilibrium:
higher density leads to large ELM size during an ELM event
because of reduced ion diamagnetic stabilization and parallel
thermal conduction from lower temperature.

For a fixed pressure profile, when density n increases
and temperature (Te; Ti) decrease, thermal diffusivities ðvef fjji;eÞ
and parallel damping decrease as well. Therefore, the pedes-
tal profiles collapse further into core plasmas, which lead to

FIG. 3. Radial profiles of electron parallel thermal diffusivity for different
separatrix density at the beginning of the simulation (t¼ 0, dashed curve)
and after the ELM crash (solid curve). Here q95¼ 5 is used to calculate the
free streaming value.

TABLE I. Linear growth rate c vs toroidal mode number n and poloidal wavelength normalized to ion Larmor radius khqi (calculated with Ti ¼ 600 eV at
peak gradient position), ELM size, and their differences between the fundamental 3-field and 6-field Braginskii’s two-fluid model. The growth rates are nor-
malized to the Alfv!en frequency xA, where xA ¼ vA=R0 and vA is the Alfv!en velocity and R0 is the major radius.

N 3 4 10 15 30 45 60 80 100 ELM size %

khqi 0.015 0.020 0.051 0.076 0.152 0.228 0.304 0.405 0.506 …

c3*field=xA 0.044 0.106 0.263 0.336 0.401 0.358 0.222 0.061 0 14.8

c6*field=xA 0 0.032 0.211 0.287 0.361 0.313 0.190 0 0 14.6

Difference % … … 19.8 12.6 10.0 12.6 14.4 … … 1.4
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larger ELM size. However, the opposite trend of the elm size
vs density or temperature is observed in experiments.17,18

We provide some cautions and two caveats on comparing
simulation results with these experimental observations for
the density or temperature scan. (1) The simulation results
are valid for a ballooning-dominated equilibrium with a fixed
bootstrap current; while experimental scan involves transi-
tions from ballooning-dominated to peeling-dominated equi-
librium and vice versa, the change of bootstrap current with
collisionality during the scan leads to changes of the mag-
netic equilibrium. (2) During the simulation scan, the pres-
sure profile and pedestal stored energy are fixed, while
during a experimental scan, higher temperature typically
means higher pedestal stored energy, which leads to more
ELM energy loss. Finally, it is worth noting that for the
range of temperature (density) variation scanned in simula-
tions, pedestal plasma is still in the weakly collisional limit;
therefore, as pedestal temperature decreases, the decreasing
of thermal diffusivity ðvef fjji;eÞ is mainly from the free-
streaming contribution vFSjjj , as shown in Fig. 3.

IV. A NEW NON-FOURIER METHOD FOR APPLYING
THE LANDAU-FLUID OPERATORS

Tokamak edge plasma regimes both necessitate the
implementation of Landau-fluid (LF) operators19,20 in edge-
plasma fluid codes, such as BOUTþþ, and also present new
challenges to existing approaches for doing so. On the one
hand, kinetic effects are important. However, significant spa-
tial inhomogeneities and complicated boundary conditions
are also present, which pose significant difficulties for the
standard Fourier implementations.

We have, therefore, developed a “fast” configuration-
space-based, non-Fourier, approach for the application of
these operators, which has Fourier-like computational scal-
ing. This approach is based on an approximation of 1=jkj by
a sum of Lorentzians

1

jkj
. b

XN*1

n¼0

ank0nn
k2 þ ðank0Þ2

: (19)

Suitable choices of constants a; b; nn; k0, and N allow for a
very good fit in Fourier space of the sum to 1=jkj over a wide
range of the wavenumber k. A detailed method and imple-
mentation description has been presented21 and will be given
in a future publication.

The key feature of the approximation in Eq. (19) is that
the Lorentzians can be interpreted as real-space Helmholtz-
equation solutions, which can be numerically implemented
using highly efficient linear solvers. The jkjjj Landau-fluid
closure has been implemented with the existing solvers in
BOUTþþ, and implementation of the toroidal jxdj closure20
is underway using slightly modified versions of the perpen-
dicular solvers available in BOUTþþ.

A theory and a constructive procedure for optimizing
approximations of the kind in Eq. (19) based on spectral
colocation has been developed, including extensions to the
operators involved in the collisional case.20 In order to better
understand the approximation, consider the simplified infi-
nite sum

Sðjkj; aÞ /
X1

n¼*1

ank0
k2 þ ðank0Þ2

: (20)

For each value of k, this sum converges to a finite value
which satisfies

Sðajkj; aÞ ¼ 1

a
Sðjkj; aÞ: (21)

Thus, a simple truncation of the infinite sum of Eq.
(20), which gives the expression on the right hand side of
Eq. (19) with nn ¼ 1, can be expected to yield a reasonable
approximation. The ratio of this expression to 1=jkj, i.e.,
jkjb

PN*1
n¼0 a

nk0nn=½k2 þ ðank0Þ2+ is shown as the red curve in
Fig. 5(a) for N¼ 7, a ¼ 5, b ¼ 1:04, and k0 ¼ 1. The collo-
cation analysis allows for a more general choice of nn and
optimizes this choice by requiring that the sum in Eq. (19)
agrees exactly with the target expression 1=jkj at a suitably
chosen set of collocation points (k values). An improved fit,

FIG. 4. (a) The time history of the ELM loss fraction (DWped=Wped) or ELM
size calculated from ion temperature (solid curve), density (dashed curve)
and electron temperature (dotted curve) for n=nG ¼ 0:26. (b) The ELM loss
fraction (DWped=Wped) or ELM size vs normalized separatrix density
nseparatrix=nG, where nG ¼ Ip=pa2. The plasma current drive and magnetic
equilibrium are fixed during the scan.
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easily obtained by this procedure, still with N¼ 7 and a ¼ 5,
and hence essentially the same computational cost in a numer-
ical implementation, is shown as the blue curve in Fig. 5(a). It
is seen that the collocation procedure improves the spectral
range of excellent fit by a factor of 100, yielding a fit with a
very small (,1:5%) relative error over a very large spectral
range (,5" 103). Fig. 5(b) shows that the nonlocal flux com-
puted using this method with an implementation of the
Lorentzian terms as solutions of Helmholtz equations using a
finite difference discretization and tridiagonal matrices gives
excellent agreement with the result from the spectral method.

To gain confidence of the non-Fourier Lorentzian
approach, further tests are done for the standard linear bench-
mark of the so-called Cyclone base case using Ottaviani gyro-
fluid model:22 the growth rate of the Ion Temperature Gradient
mode (ITG) as a function of the poloidal wave vector khqi.
The Cyclone base case parameters23 are safety factor q¼ 1.4,
magnetic shear s¼ 0.78, inverse aspect ratio r/R¼ 0.19, nor-
malized temperature gradient length R=LT ¼ 6:9, normalized
density gradient length R=LN ¼ 2:2, electron to ion tempera-
ture ratio Te=Ti ¼ 1, electrostatic, and adiabatic electrons. The
growth rate for this case is shown in Fig. 6 as a function of the
normalized poloidal wave vector (khqi) with (red curves) and
without Landau-damping (blue curves) calculated with both
BOUTþþ code (solid curve) and global ITG eigenvalue
solver (dashed curve) with rjj operator using Fourier Method.
As can be seen from the figure, good agreement is obtained.

The addition of the parallel Landau-damping closure in
Cyclone-base case simulations brings the curve (red curve) of
the linear growth rate vs. toroidal wavenumber into better
agreement with the gyrokinetic results (dotted curve) than in
the absence of this closure (blue curve). It is anticipated that
the inclusion of the toroidal closure will further greatly
improve the level of agreement.

We have implemented and compared the computational
cost of this and other approaches. Fig. 7 shows that the fast
non-Fourier approach has a computational cost scaling for
large numbers of grid cells similar to the Fourier approach.
For modest numbers of grid cells, (<100), direct matrix mul-
tiplication is a viable alternative and can be more efficient
than even the Fourier approach.

V. SUMMARYAND DISCUSSIONS

In conclusion, an isothermal electromagnetic 3-field
gyro-fluid model [Eqs. (3) and (8), and (9) with the auxiliary

FIG. 5. (a) Ratio of actual value of jkj to fit using a sum of 7 scaled
Lorentzians. The “truncated” curve is for a simple truncation fit, while the
“colloc” curve is for an improved fit from the collocation analysis. (b)
Comparison of the nonlocal flux resulting from a temperature profile (black
solid). The curves are nonlocal flux computed with the sum of Lorentzians
(blue dashed), and Fourier method (red), and the local (diffusive) flux com-
puted with finite differences (green dashed), and the Fourier method (orange).

FIG. 6. For Ottaviani physics model using parameters of cyclone base case,
the solid lines are the results from BOUTþþ code using the Lorentzian
method, while the dashed lines are the results from eigenvalue solver. The
dotted curve is from gyrokinetic code. The spectral shift parameter
k0 ¼ 0:05=qR, where q ¼ rBt=RBp is the local safety factor, and r is the
local minor radius. N¼ 7, a ¼ 5; b ¼ 1:04, and nn ¼ 1.

FIG. 7. Computational time versus the number of grid cells in a periodic do-
main for the sum of Lorentzians (non-Fourier), direct matrix multiplication
(Matult), and Fourier approaches.
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equations (4), (10) and (11), (16) and (17)] has been devel-
oped and implemented in the BOUTþþ framework to study
the physics of nonlinear peeling-ballooning mode dynamics.
It is found from linear simulations that retaining complete
first order FLR corrections as resulting from the incomplete
“gyroviscous cancellation” in Braginskii’s two-fluid model
[i.e., including all three terms on the second line of Eq. (15)]
is necessary to obtain good agreement with gyro-fluid results
for high ion temperature cases (Ti! 3keV) when the ion
density has a strong radial variation, which goes beyond the
simple local model of ion diamagnetic stabilization of ideal
ballooning modes. Nonlinear gyro-fluid simulations show
results that are similar to those from the two-fluid model,
namely that the P-B modes trigger magnetic reconnection,
which drives the collapse of the pedestal pressure. Hyper-
resistivity is still required in gyro-fluid simulations to facilitate
magnetic reconnection. Due to the additional FLR-corrected
nonlinear E " B convection for the ion gyro-center density,
for a ballooning-dominated equilibrium, the gyro-fluid model
further limits the radial spreading of ELMs, and the FLR
effect can significantly decrease the ELM size when the ped-
estal ion temperature increases from 1keV to 4 keV because
high-n modes are stabilized.

The multi-field two-fluid simulations, including addi-
tional physics such as ion acoustic waves, parallel thermal
diffusivities, Hall effect, toroidal compressibility, and
electron-ion friction, show that the change of the peak linear
growth rate is less than 20% in comparison with the results
of the basic 3-field two-fluid model. The difference of ELM
size at the saturation phase between 3-field and 6-field
two-fluid models is 1.4%. Therefore, the 3-field two-fluid
model is good enough to qualitatively understand the ELM
thresholds due to P-B modes and quickly simulate early phase
of ELM crashes with strongly unstable pedestals. However,
ELM dynamics is a multi-scale problem, ranging from meso-
scale MHD events to micro-scale turbulent dissipation due to
electron gyro-radius effects. In order to simulate a ELM cycle
and perform experimental validations, sophisticated multi-
field models are also under development to obtain (1) ELM
power loss via separate ion and electron channels, (2) ELM
power depositions on plasma facing components (PFCs), and
(3) self-consistent turbulence and transport between ELMs for
the pedestal profiles rebuild. Furthermore, we find that the par-
allel thermal diffusivities are large on the top of pedestal plas-
mas, which prevent the further encroachment of ELM
perturbation into core plasmas and therefore leads to steady
state L-mode profiles. This motivates us to develop a nonlocal
parallel Gyro-Landau-fluid thermal transport model valid in
all collisionality regimes.

Both two-fluid and gyro-fluid simulation results show
that for a density or temperature scan with a fixed pressure
profile and for a ballooning-dominated equilibrium, the FLR
effect can significantly decrease the ELM size because high-n
modes are stabilized. For typical experimental scenarios with
natural transition between peeling dominated and ballooning
dominated equilibria, the scaling characteristics of the ELMs
size will be given in a future publication.

Finally, we have developed non-Fourier, configuration-
space-based approaches for the computation of Landau-fluid

operators. We find that the fast non-Fourier approach has a
computational cost scaling for large numbers of grid cells
similar to the Fourier approach. The advanced gyro-fluid
models with closure of high moments are under active devel-
opment to simulate the meso-scale ELM dynamics and
micro-scale turbulence valid in all collisionality regimes,
which preserve particle, momentum and energy conserva-
tion, and include Landau damping, linear and nonlinear
FLR, toroidal drifts, and drift resonance.
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